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EXTRACTION OF OBJECTS FROM CT
IMAGES BY SEQUENTIAL SEGMENTATION
AND CARVING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority of co-pend-
ing U.S. Provisional Patent Application No. 61/567,977, filed
Dec. 7, 2011, entitled “Extraction of Objects from CT Bag
Images by Sequential Segmentation and Carving.” The dis-
closure of the above-referenced provisional application is
incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to extraction of objects from
images, and more specifically, to extraction of objects from
CT images by sequential segmentation and carving.

SUMMARY

The present invention provides for extraction of objects
from CT images by sequential segmentation and carving.

Other features and advantages of the present invention will
become more readily apparent to those of ordinary skill in the
art after reviewing the following detailed description and
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 through FIG. 46 illustrate various embodiments of
the present invention.

DETAILED DESCRIPTION

Certain implementations as disclosed herein provide for
extraction of objects from CT images. After reading this
description it will become apparent how to implement the
invention in various implementations and applications.
Although various implementations of the present invention
will be described herein, it is understood that these imple-
mentations are presented by way of example only, and not
limitation. As such, this detailed description of various imple-
mentations should not be construed to limit the scope or
breadth of the present invention.

[Executive Summary

Modern Explosive Detection Systems (EDS) detect explo-
sives and related threats based on the X-ray attenuation as
measured by volumetric Computed Tomography (CT) scan-
ners. All such EDS manufacturers equip the CT scanner with
their own proprietary Automatic Threat Recognition (ATR)
algorithm to determine the presence of explosives in passen-
ger bags. It has been a long interest of Department of Home-
land Security (DHS) and Transportation Security Adminis-
tration (TSA) to improve the underlying ATR technology. The
ATR technology shows that all ATR algorithms begin by
determining suspect regions through some image segmenta-
tion algorithm. Advances in CT image segmentation would
naturally result in the improvement in the existing ATR tech-
nology.

Awareness and Localization of Explosives Related Threats
(ALERT) specified to extract all objects within the bag that
satisfies: (1) the mean modified Hounsfield unit (MHU) value
is greater than or equal to 500, and (2) the volume is greater
than or equal to 50 cc. TSS has developed an algorithm to
extract such objects satisfying the two specifications.
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The TSS segmentation algorithm consists of three process-
ing stages: preprocessing of the volumetric CT data, extrac-
tion of 3-D objects by sequential application of segmentation
and carving (SC), and post-processing of segmented 3-D
objects. At the preprocessing stage, the algorithm first com-
pensates for CT artifacts through bilateral filtering that per-
forms edge-preserving smoothing. Next, the algorithm per-
forms five different SCs sequentially. The first SC segments
bulk objects and carves them out from the volume data. The
remaining SCs sequentially segments medium thickness
objects, sheet objects, metallic objects, and remaining hetero-
geneous objects. For segmentation and labeling, we adapt
symmetric region growing that does not require seed points
amenable to fast execution invariant to voxel processing
order. At the post-processing stage, the algorithm splits
merged objects and merges split objects according to a num-
ber of heuristics. For splitting merged objects, three different
splitting methods are applied: random sample consensus
(RANSAC) plane fitting, recursive k-means clustering, and
morphological opening. Split objects are merged based on
spatial proximity, mean MHU value, and type.

The algorithm accomplishes the project goal successfully
for the following five focus cases: Training Dataset 3 (T3),
Training Dataset 6 (T6), Training Dataset 15 (T15), Training
Dataset 17 (T17), and Validation Dataset (V12). The algo-
rithm performs well on bulk objects (e.g., bottles of liquid,
candles, nylon blocks, battery packs, etc.) and medium thick-
ness objects (e.g., books, thick rubber sheets, etc.). It also
segments heterogeneous objects well. For example, a cell
phone is segmented as three objects: a leather case, an inner
metallic part, and a remaining heterogeneous part. All sheet
objects are segmented but usually in several smaller pieces
especially for thin sheets.

The project goal is to develop an automatic (unsupervised)
algorithm to perform object segmentation, the process of
partitioning voxels into a list of regions, from volumetric CT
data of checked baggage. Requirements for objects to be
segmented are: 1) its mean MHU value is greater than or equal
to 500 and 2) its aggregate volume is greater than or equal to
50 cc. Since the voxel size of CT data we handle is (Ax, Ay,
Az)=(0.98 mm, 0.98 mm, 1.29 mm), 50 cc corresponds to
40358 voxels. In practice, such requirements imply that vir-
tually all objects except clothes should be segmented.

(a) Definition of Object

It is important that we first establish the definition of an
object as the object segmentation algorithm can only be
developed and evaluated against the underlying definition.
The definition should expedite the construction and imple-
mentation of algorithms to classify detected (or segmented)
3-D objects based on CT measurements. While one may
define objects simply by physical presentation, such as to
define the “water in glass container” as a single object despite
the fact that it consists of the water and the glass container, it
would be prudent to define the “water in glass container” as
two separate objects, namely the water and the glass con-
tainer. Considering the “water in glass container” as a single
object would give us the erroneous computation of density as
the computed density would be somewhere in between the
density of the water and the glass. However, if the container
had been made of plastic, whose atomic number and density
are closer to that of water, it would have been acceptable to
consider the “water in plastic container” as a single object.
FIG. 1 graphically illustrates the overall procedure of seg-
mentation algorithm.

Thus, we define an object as being composed of physically
contiguous homogeneous material. Object homogeneity is
characterized by the difference of about 50 in MHU for adja-



US 9,123,119 B2

3

cent voxels. Accordingly, regions segmented by an algorithm
should be homogeneous so that properties such as density
may be estimated from the MHU values. In addition, the
detected homogeneous region should be large enough, (for
instance, greater than or equal to 50 cc as specified by
ALERT), so that these estimates can be determined with high
confidence.

The ramifications of our object definition are as follows: a)
allow the separation of a single physical object as many Cell
phone into three objects (plastic case, circuit board, battery);
b) whether or not to separate two touching bottles—1) of
same liquid: does not matter. It is acceptable to detect a bottle
of liquid as two separate objects, for instance, for hourglass
shaped bottles with a very think waist—2) of different liq-
uids: must be separated, e.g., water & alcohol.
Segmentation Algorithm
(a) Overview

The segmentation algorithm consists of three stages: pre-
processing of volume data, object segmentation by sequential
application of SC, and post-processing of segmentation
results. FIG. 1 shows the overall procedure of TSS segmen-
tation algorithm. The preprocessing stage compensates for
CT artifacts by applying bilateral filtering. In the segmenta-
tion stage, “Segmentation and Carving” (SC) is applied five
times sequentially, each focusing on different objects.
Objects segmented by each SC are then carved out from the
volume data for the next SCs. The five SCs are focused on
different types of objects as follows:

1. SC1: Homogeneous bulk objects

2 . SC2: Homogeneous medium thickness (about 5 to 10
voxels) objects

3 . SC3: Homogeneous sheet objects (less than 5 voxels
across the short axis)

4 . SC4: Homogeneous metallic objects (greater than MHU
of 3700)

5.SC5: All remaining heterogeneous objects composed of
two or more homogeneous objects

FIGS. 2A and 2B show application of bilateral filtering to
CT images. The display window is [0 1800]. Clearly, CT
artifacts are noticeably reduced by bilateral filtering (com-
pare regions in red circles in two images). FIG. 2A shows the
original image. FIG. 2B shows after bilateral filtering.

Descriptions of specific types of objects each SC focuses
on are detailed in explaining each SC in a section below. The
purpose of this sequential application of SCs is to make the
problem simpler by extracting objects that are easier to seg-
ment first. As a segmentation tool, we utilize the symmetric
region growing (SRG) technique with a fast algorithm. Since
SRG does not require seed points, it is suitable for unsuper-
vised segmentation. The homogeneity of segmented objects
is determined by a region growing parameter of SRG. The
segmentation results are compensated (or refined) by splitting
merged objects and merging split objects during the post-
processing stage. The objects are split and merged based on
the homogeneity determined by histogram analysis. We now
present details of each algorithmic stage.

(b) Preprocessing: Bilateral Filtering

CT images usually suffer from various CT artifacts such as
streaking, shading, and beam hardening. Effects of these arti-
facts are prominent in CT images of checked baggage due to
the abundance of metallic objects. Such artifacts may resultin
over-segmentation, where a single object is split into many
small regions, and erroneous grouping of objects. Therefore,
it is necessary to mitigate CT artifacts for better segmenta-
tion.

In order to reduce CT artifacts, we apply bilateral filtering
as preprocessing. Bilateral filtering essentially performs
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image smoothing while preserving sharp edges. The result of
bilateral filtering on a pixel is the weighted sum of neighbor-
ing pixels, where weights are determined by two factors:
domain (spatial position) and range (image value) similari-
ties. Bilateral filtering for an image f(p) can be expressed as

S ®) KA Dhdo-Dh(0)-A9)ldg M

where h (p) and h,(p) are typically Gaussians (e.g., cen-
tered at zero with the spread 0, and 0,), and K is a normal-
ization factor so that the sum of weights is unity. Eq. (1)
implies that only pixels similar in both domain and range will
have larger weights, thus yielding edge-preserving smooth-
ing.

FIGS. 2A and 2B show an example of bilateral filtering
results applied to a CT image of checked baggage. Clearly,
CT artifacts are noticeably reduced by bilateral filtering
(compare regions in red circles in two images). The param-
eters 0,=20 and 0,=200 for Gaussians hr) and h,(r) were
chosen empirically that resulted in visually pleasing regions.
The bilateral filter processed the 3-D images slice-by-slice.
Although 3-D bilateral filtering is possible and may yield
better results, we opt for 2-D bilateral filtering considering
computational costs.

(c) Segmentation and Carving

(1) Symmetric Region Growing

The segmentation algorithm utilizes symmetric region
growing (SRG) that does not require seed points. SRG grows
a region using a symmetric region growing function g(p,q):

g, )=TRUE—p and g belongs to the same region. 2)

The symmetric region growing function we actually use is

8. P=lfip)-Ag)=c. ®
Since p and q in Eq. (3) are interchangeable, Eq. (3) is
symmetric. SRG ensures segmentation results invariant to
voxel processing order. Furthermore, a fast algorithm for
SRG exists with O(N) complexity, where N is the total num-
ber of voxels.

Setting ¢ differently results in different segmentation
results. Larger ¢ usually results in under-segmentation (dif-
ferent objects grouped into a single region) and smaller ¢
results in over-segmentation (a single region segmented in
many pieces). By selectively processing voxels within a win-
dow of MHU s, I, <f{(p)=I,, we can segment characteristically
different objects with different c. Therefore, we define Seg-
mentation and Carving function SC(I,, I, ¢) that performs the
following sequentially:

Segmentation and Carving, SC(I;, 1, ¢)

Obtain a binary mask by thresholding with I, and L.

Perform processing of the binary mask.

Perform SRG with ¢ and Eq. (3) for voxels selected by the

processed binary mask.

Carve out segmented objects for next SC steps.

(i1) SC1 for Homogeneous Bulk Objects

SC1 focusing on homogeneous bulk objects takes Segmen-
tation and Carving, SC(600,2000,50). For processing of the
binary mask, morphological opening is performed with a
11x11x11 cube as a structuring element. Since opening is
erosion followed by dilatation [3], we can remove regions
with local thickness less than 11 voxels. Here, one voxel is
approximately 1 mm and thus 11 voxel will result in bulk
objects whose shortest axis will be greater than approxi-
mately 1 cm. As a result of opening with a 11x11x11 cube,
SRG can segment only relatively bulky objects. There is a
volume constraint in SC1 that a segmented object volume
should be greater than or equal to 50 cc.



US 9,123,119 B2

5

FIGS. 3A and 3B show boundary adjustment by Chan-
Vese method. FIG. 3A shows original boundary, and FIG. 3B
shows after After boundary adjustment.

Since SC involves thresholding with I, and I,, boundaries
of'segmented objects do not accurately match with real object
boundaries due to the partial volume effect. As a result, the
volume of the segmented object is typically smaller than its
actual volume. To adjust the object boundaries, we apply a
level set-based active contour technique, which is popular in
medical image segmentation. Segmentation by level set-
based active contours is to find a contour represented by a
level set function that minimizes an energy functional com-
posed of an internal term related to contour smoothness and
an external term related to image information. We specifically
use the Chan-Vese method based on region-based Mumford-
Shah energy functional. Although 3-D formulation of the
Chan-Vese method is straightforward, we opt for 2-D formu-
lation considering computational costs (as in the case with
bilateral filtering). We apply the Chan-Vese method three
times slice-by-slice inx-y, y-z, and x-z slices. F1G. 3 shows an
example of boundary adjustment by the Chan-Vese method.
Boundary adjustment increases the volumes of segmented
objects about five percent on average when compared to the
original boundary. The visual check of FIGS. 3A and 3B show
the adjusted contour in 3B appears to be a better fit for the
segmented region compared to the original contour shown in
3A. After performing boundary adjustment, those segmented
objects are carved out from the volume data.

(iii) SC2 for Homogeneous Medium Thickness Objects

SC2 focusing on homogenous objects with medium thick-
ness takes SC(600,2000,50), which is the same as SC1. The
difference between SC1 and SC2 lies in the structuring ele-
ment used in binary mask processing. In SC2, a 5x5x5 cube
is used for opening of the binary mask, and the volume thresh-
old is 10 cc. (In the remaining SC3, SC4, and SC5, volume
thresholds are all 10 cc.)

(iv) SC3 for Homogeneous Sheet Objects

SC3 focusing on homogeneous sheet objects takes
SC(400,1500,50). Note that the lower threshold I, is lowered
from 600 to 400 compared with SC1 and SC2 in consideration
of partial volume effect of thin sheet objects. In SC3 and the
remaining SC4 and SCS5, the binary mask processing is dif-
ferent from that in SC1 and SC2. Instead of opening with a
cube structuring element, the binary mask is convolved with
a 7x7x7 kernel of 1’s, and voxels whose count is below a
threshold (80) are removed. By this selective removal pro-
cess, voxels considered as having weak connections between
different objects can be removed and the remaining small
regions (after carving from previous SCs) can be cleaned up.

FIG. 4 is a flow chart of object splitting and merging in the
post-processing stage.

FIG. 5 is an example of the object histogram. If there are
multiple peaks in the histogram that are separated well and
sufficiently tall, the object should be split.

(v) SC4 for Homogeneous Metallic Objects

SC4 focusing on homogeneous metallic objects takes
SC(3700,MAX,50) where MAX is the maximum value of CT
images (4095 for our dataset). The binary mask processing is
the same as SC3.

(vi) SC5 for Remaining Heterogeneous Objects

SC5 focusing on remaining heterogeneous objects takes
SC(1200,MAX,300). The binary mask processing is the same
as in SC3. Note that a considerably large c is used to effec-
tively compensate for variability in MHU values in heteroge-
neous objects.
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6
(d) Post-Processing: Split and Merge

Since SRG is purely based on only MHU values as well as
voxel positions, the segmentation will generate objects of
different materials that are merged together when they touch.
In addition, because of CT artifacts and binary mask process-
ing, the segmentation will generate multiple objects from a
single object. Therefore, we refine segmentation results by
splitting merged objects and merging split objects at the post
processing stage. FIG. 4 shows a flow chart of object merging
and splitting in the post-processing stage.

FIG. 6 shows detected boundary points common to both
objects. FIG. 6A shows 2-D simulation cases, and FIG. 6B
shows 3-D real cases.

FIG. 7 shows examples of split merged objects by
RANSAC-based plane fitting from (a) T15 (70% isopropyl
alcohol and water), (b) T17 (Mountain Dew and motor oil),
and (c¢) V12 (organic stack and aerosol metallic paint).

(1) Object Splitting Based on Histogram Analysis

As mentioned previously in Section 1, we allow objects of
the same material, i.e., similar in MHU values, to merge.
Thus, we determine whether an object should be split or not
based on its histogram of MHU values. As shown in FIG. 5, if
there are multiple peaks in the object histogram that are
separated well and sufficiently tall, the object should be split.
We apply this histogram analysis for objects segmented from
SC1, SC2, and SC3 whose volume is greater than 100 cc.
Since all objects segmented from SC4 are virtually all homo-
geneous, there is no need for histogram analysis. Similarly,
since SC5 groups all remaining heterogeneous objects, there
is also no need for histogram analysis.

(i1) Object Splitting by RANSAC-Based Plane Fitting

In order to split large merged objects segmented from SC1
whose volume is greater than 500 cc, we first detect the
boundary points that are common to both objects. At each
boundary voxel, we calculate the number of object voxels
within an 11x11x11 window surrounding the voxel. At the
boundary points where objects merge, those numbers are
usually much greater than those at other boundary points. For,
we classify voxels whose calculated numbers are greater than
the threshold as voxels at common boundary points. FIG. 6
shows boundary points that are common to both objects for
simulated 2-D images and real 3-D CT images.

Next, we find the best-fitting plane at the detected points
and split the object using the best-fitting plane. We use
RANSAC to fit a plane to detected points. RANSAC is an
iterative method to robustly estimate parameters of a model
from a set of observed data with outliers [7]. In spite of
possible outliers in detected touching points, we can find a
good cutting plane through RANSAC. FIG. 7 shows objects
separated by planes found by RANSAC.

FIG. 8 shows xamples of split merged objects by recursive
k-means clustering from T3. (a) Candles and butyl rubber
sheet. (b) Toothpaste and magazine. (¢) Sneaker and flat iron.
FIG. 9 shows examples of split merged objects by opening
from (a) T15 (crayons and neoprene rubber sheet) and (b) T17
(container of aerosol and laptop).

(ii1) Object Splitting by Recursive k-Means Clustering

For merged objects from SC2 and SC3, and small merged
objects from SC1 whose volume is less than 500 cc, we apply
k-means clustering instead of RANSAC-based plane fitting.
This is because shapes of smaller objects are usually more
irregular than those of larger objects. k-means clustering is a
cluster analysis method that partitions observations into k
clusters based on the distance from cluster centers. k-means
clustering iteratively finds cluster centers and partitions that
minimize with-in cluster distances. For splitting purposes, we
recursively apply k-means clustering with k=2 until all split
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objects are homogeneous (passes the histogram analysis test).
FIG. 8 shows examples of object splitting by the recursive
k-means clustering.

(iv) Object Splitting by Opening

In the final step of object splitting, we split objects based on
differences in thickness. We observe the possibility that both
thin and relatively thick objects are segmented and merged
together from SC2 and SC5. Therefore, we split these merged
objects by applying opening with a 15x15x15 cube for binary
masks of objects because only thin objects can be removed by
opening. To prevent thin parts of an object, such as a plastic
case of a laptop, from being removed by opening, closing
(dilation followed by erosion) is first performed. This split-
ting by opening method is performed regardless of histogram
analysis for all objects (whose volume is greater than 100 cc)
segmented from SC5 and SC2 after splitting by recursive
k-means clustering. F1G. 9 shows examples of objects split by
opening.

FIGS. 10A to 10C show examples of merged split objects
from (a) T3 (magazine), (b) T6 (tripod), and (c¢) T17
(candles).

(v) Object Merging

We merge split objects based on the following three crite-
ria: spatial proximity, mean MHU value, and type of objects
(bulk, medium thickness, and sheet). Spatial proximity is
determined by the nearest distance between the boundaries of
objects. The type is represented by the mean of distance
transform of the object binary mask. Since the distance trans-
form assigns a distance to the nearest boundary to each voxel,
its mean values will be smaller for thin objects and larger for
bulk objects. Objects that satisfy all three criteria defined by
threshold values are merged into a single object. Threshold
values used for the boundary distance, mean MHU value, and
mean of distance transform are 5 voxels, 150, and 0.2, respec-
tively. FIG. 10 shows examples of merged split objects.

(e) Results

We tested the performance of the TSS segmentation algo-
rithm for five focus cases, T3, T6, T15, T17, and V12. The
quality of segmentation results can be visually checked from
presentation slides attached at the end of this report. (When
comparing our results to the provided reference labels, please
refer to the PowerPoint slides.) Objects marked by green
letters (from the slides) indicate that the object volume is
greater than 10 cc (our own volume constraint) and less than
50 cc (volume constraint of the project).

The segmentation algorithm performs well on homoge-
neous bulk objects such as bottles of liquids (water, various
beverages, honey, oil, aerosol, etc.), blocks of clay and nylon,
candles, pieces of steel, and battery packs. Note that steel
bottles and glass candle holders are successfully segmented
as separate objects. The algorithm also performs well for
homogeneous medium thickness objects such as books,
magazines, and thick rubber sheets. The algorithm segments
heterogeneous into homogeneous and heterogeneous compo-
nents. For instance, a cell phone is segmented into a leather
case (homogeneous), inner metallic part (homogeneous), and
remaining heterogeneous part. All sheet objects are seg-
mented by the algorithm but usually in several smaller pieces.
Very small metallic objects such as batteries in tooth brushes
are missed because of the volume constraint of the algorithm
(10 cc).

The limitations of the algorithm are summarized as fol-
lows:

Thin rubber sheets are segmented into several smaller

pieces.

MHU values of thin rubber sheets are spread over from O to

600-800 across 7-10 voxels
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In SC3, thresholding with 1,=400, 1,=1500, the resulting
binary mask for thin rubber sheets becomes about 2-3
voxels thick, where in reality, the actual sheets can be
greater than 6-7 voxels thick, especially because the
given scanner’s PSF was found to be over 6 mm. Recall
that voxel size is about 1 mm for the given scanner.

In some cases, the mask becomes 1 or 0 voxel wide due to
streaks from CT artifacts, resulting in objects being split
into several smaller pieces

Partial volume compensation processing is needed

The scanner appears to have PSF with FWHM of about 3-4
mm

A 3 mm sheet shows up as a sheet of about 6 voxels FWHM
with MHU of ~600

It fails to correctly segment the stack of sheet objects in
Vi12.

We segmented it as a single large bulk object as all sheets
have similar MHU.

(1) Quantitative Performance Analysis

Recently, Lawrence Livermore National Laboratory

(LLNL) defined two metrics to evaluate segmentation results
quantitatively: “Wholeness” (W) and “Exclusiveness” (E). W
measures how much of a ground truth object (G) is captured
by a segmented region (S) and can be expressed as

area(G (1 S) “)

area(G)

E measures how much of S is made up of G and can be
expressed as

area(G () S)
area(S)

®

When both W and E are high, segmentation results for S
can be regarded as good. With W and E, “P1Quality” (Qp )
and “P2Quality” (Qp ) are defined for S as

n ©
Op = Y Wi E,

i=1

n ™
Op, =y WHE;

where n is the number of segmented regions in S. While Qp,
penalizes merging more than splitting, Qp, penalized both
merging and splitting. When both Qp, and Qp, are high, seg-
mentation results for S can be regarded as good. FIG. 11
graphically illustrates the relationship between the quality of
segmentation and the four metrics, W, E, Qpps and Qp,-

FIG. 11 graphically illustrates relations between segmen-
tation quality and four metrics defined by LLNL, “Whole-
ness”, “Exclusiveness”, “P1Quality”, and “P2Quality”.
Images are extracted from the PowerPoint slides provided by
LLNL.

FIGS. 12A and 12B are plots of “Wholeness”, “Exclusive-
ness”, “P1Quality”, and “P2Quality” computed from our seg-
mentation result for T3.

FIG. 12 shows plots of W, E, Qp , and Qp, computed from
our segmentation result for T3. From these plots, we can
identify that the TSS segmentation algorithm performs quite
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well for homogeneous objects such as a toothpaste tube, thick
hard rubber sheet, and CDs; and moderately for bar soaps,
candles, magazine, and Skip Bo. It is also clear that it is
difficult to accurately segment objects composed of thin
materials such as sneakers and heterogeneous objects such as
a flat iron.

Note that this quantitative performance analysis using W,
E, Qp,, and Qp, directly depends on the reference labels, for
instance, those provided by ALERT. For example, the refer-
ence label for soap bars includes three soap bars and a paper
container, and the reference label for Skip Bo includes three
card stacks and a metallic container. If there were six inde-
pendent reference labels for the three soap bars and the three
card stacks, our segmentation result would have shown higher
segmentation quality figures Qp , and Q»..

FIGS.13A to 13C show three 1-D PSFs estimated from CT
data. (a) h(x). (b) k(). (c) h(z).

FIGS. 14A to 14C show 3-D PSF at z=7, z=8, and z=9,
respectively.

FIGS.15A and 15B show result of deblurring using the 3-D
PSF shown in FIG. 14. The display window is [0 1500]. 15A
shows the original image, and 15B shows after deblurring.
(®) Discussion and Conclusion

(1) Feature Extraction

By assuming that 1000 MHU corresponds to 1 g/cc, object
features such as mass, density, and volume can be obtained
directly from CT values (unless pixels are corrupted by beam
hardening, scatter, streaks, and partial volume effect). In
extracting the object features, we should consider the partial
volume effect. For bulk and medium thickness objects, better
estimates of the densities can be calculated considering only
voxels well within the boundary. However, for thin sheet
objects, it is not possible to obtain accurate densities due to
the partial volume effect affecting every voxel. However, it
can be mitigated through deblurring by deconvolution.

We first estimate the three 1-D point spread functions
(PSF) oflength 17 pixels in the three axes from the CT image.
FIG. 13 shows the estimated PSFs. Assuming that the 3-D
PSF to be separable, we obtaina 17x17x17 3-D PSF from the
estimated 1-D PSFs. FIG. 14 shows certain slices of the 3-D
PSF. Using this 3-D PSF, we deblur CT data using Wiener
filtering. FIG. 15 shows the result of deblurring for a thin
neoprene sheet in T15. The density of a thin neoprene sheet
estimated with the original CT images is 0.662, while the
density estimated with deblurred images is 0.811 . Since the
neoprene sheet is considerably thin, a profile of MHU values
of its blurred images along the surface normal will have a
peaked shape. Based on this exercise, we estimate the density
after applying maximum filtering to the deblurred image. In
this case, the estimated density is 1.05 . Considering that the
physical density of neoprene sheets ranges between 1.2 and
1.7 [10], density of the segmented neoprene sheet is estimated
more accurately by deblurring.

FIG. 16 to FIG. 46 relate to write-up in the appendix.

The above description of the disclosed implementations is
provided to enable any person skilled in the art to make or use
the invention. Various modifications to these implementa-
tions will be readily apparent to those skilled in the art, and the
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generic principles described herein can be applied to other
implementations without departing from the spirit or scope of
the invention. Accordingly, additional implementations and
variations are also within the scope of the invention. Further,
it is to be understood that the description and drawings pre-
sented herein are representative of the subject matter which is
broadly contemplated by the present invention. It is further
understood that the scope of the present invention fully
encompasses other implementations that may become obvi-
ous to those skilled in the art and that the scope of the present
invention is accordingly limited by nothing other than the
appended claims.

The invention claimed is:

1. A non-transitory computer readable medium containing
instructions that when executed by a processor perform a
method of extracting objects from a computed tomography
(CT) image, the method comprising:

applying bilateral filtering to a volumetric data of the

objects in the CT image;

sequentially segmenting and carving the objects from the

volumetric data of the objects in the CT image,

wherein the objects are segmented and carved in the order
of:

(1) homogeneous bulk objects, (2) homogeneous
medium thickness objects, (3) homogeneous sheet
objects, (4) homogeneous metallic objects, and (5)
heterogeneous objects;

adjusting object boundaries of the objects by level set-

based active contours which include finding a contour

represented by a level set function having an internal
term related to contour smoothness and an external term
related to image information; and

splitting and merging the segmented objects based on

homogeneity of the objects in the CT image.

2. The non-transitory computer readable medium of claim
1, wherein sequentially segmenting and carving homoge-
neous bulk objects and homogeneous medium thickness
objects each include steps in the order of:

obtaining a binary mask using a thresholding window;

performing morphological opening of the binary mask

with a structuring element;

performing symmetric region growing with a region grow-

ing parameter for voxels selected by the binary mask;

and

carving the segmented objects out of the volumetric data.

3. The non-transitory computer readable medium of claim
2, the method further comprising adjusting the width of the
thresholding window and the size of the structuring element
to specity characteristics of target objects for the segmenta-
tion and carving.

4. The non-transitory computer readable medium of claim
1, the method further comprising:

determining whether the segmented objects that have been

merged should be split by analyzing a histogram of the

segmented objects; and

splitting merged objects when there are multiple dominant

peaks in the histogram.
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